A Stochastic Mortar Mixed Finite Element Method for Flow in Porous Media with Multiple Rock Types
نویسندگان
چکیده
This paper presents an efficient multiscale stochastic framework for uncertainty quantification in modeling of flow through porous media with multiple rock types. The governing equations are based on Darcy’s law with nonstationary stochastic permeability represented as a sum of local Karhunen-Loève expansions. The approximation uses stochastic collocation on either a tensor product or a sparse grid, coupled with a domain decomposition algorithm known as the multiscale mortar mixed finite element method. The latter method requires solving a coarse scale mortar interface problem via an iterative procedure. The traditional implementation requires the solution of local fine scale linear systems on each iteration. We employ a recently developed modification of this method that precomputes a multiscale flux basis to avoid the need for subdomain solves on each iteration. In the stochastic setting, the basis is further reused over multiple realizations, leading to collocation algorithms that are more efficient than the traditional implementation by orders of magnitude. Error analysis and numerical experiments are presented.
منابع مشابه
A multiscale preconditioner for stochastic mortar mixed finite elements
0045-7825/$ see front matter 2010 Elsevier B.V. A doi:10.1016/j.cma.2010.10.015 ⇑ Corresponding author. E-mail address: [email protected] (T. Wilde The aim of this paper is to introduce a new approach to efficiently solve sequences of problems that typically arise when modeling flow in stochastic porous media. The governing equations are based on Darcy’s law with a stochastic permeability...
متن کاملEfficient algorithms for multiscale modeling in porous media
We describe multiscale mortar mixed finite element discretizations for second order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mo...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملMultiblock Modeling of Flow in Porous Media and Applications
We investigate modeling flow in porous media in multiblock domain. Mixed finite element methods are used for subdomain discretizations. Physically meaningful boundary conditions are imposed on the non-matching interfaces via mortar finite element spaces. We investigate the pollution effect of nonmatching grids error on the numerical solution away from interfaces. We prove that most of the error...
متن کاملStochastic collocation and mixed finite elements for flow in porous media
The aim of this paper is to quantify uncertainty of flow in porous media through stochastic modeling and computation of statistical moments. The governing equations are based on Darcy’s law with stochastic permeability. Starting from a specified covariance relationship, the log permeability is decomposed using a truncated Karhunen-Loève expansion. Mixed finite element approximations are used in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 33 شماره
صفحات -
تاریخ انتشار 2011